Абсолютный ноль: что это?

Абсолютный нуль температуры определяется как точка, в которой тепло больше не может покинуть систему. Это соответствует нулю по шкале Кельвина или минус 273,15 по шкале Цельсия. Это так же нуль по шкале Ранкина и минус 459,67 по Фаренгейту.

Классическая физика утверждает, что абсолютный нуль температуры означает полное отсутствие движения отдельных молекул. Однако экспериментальные данные показывают, что это не так. Скорее это указывает на то, что частицы при абсолютном нуле имеют минимальное колебательное движение. Другими словами, хотя тепло и не может покинуть систему при таких условиях, абсолютный нуль температуры все же не представляет собой минимально возможный энергетический уровень этой системы.

В квантовой механике абсолютный нуль представляет самую низкую внутреннюю энергию которое может иметь материя.

Абсолютный нуль и температура

Мы все используем понятие температуры для описания того, насколько горячий или холодный какой-либо объект. Температура объекта зависит от скорости колебаний его атомов и молекул. Хотя абсолютный нуль температуры представляет их колебания на самой низкой скорости, это движение на самом деле никогда не прекращается полностью.

Можно ли достичь абсолютного нуля?

Достичь температуры абсолютного нуля наука пока не может. И, скорее всего, это просто невозможно. Потому что извлечение очень маленьких объемов энергии потребует все больших и больших ее затрат. И извлечение энергии из системы до нуля потребует использования ее бесконечного количества. Хотя ученые все равно работают над решением этой задачи. Самой низкой температуры за всю историю современной физики удалось достигнуть двум ученым из США. Их имена — Эрик Корнелл и Карл Виман. В 1995 году им удалось охладить атом рубидия до температуры, которая была выше абсолютного нуля на 1/170 миллиардную долю градуса по Кельвину.

Отрицательные температуры

Физики утверждают, что бывают даже отрицательные температуры по Кельвину (или Ранкину). Однако это не означает, что частицы становятся холоднее абсолютного нуля. Скорее это показатель того, что просто уменьшилась их энергия.

Это происходит по той причине, что температура является термодинамической величиной. Она связывает между собой энергию и энтропию. Когда система приближается к своей минимальной энергии, ее энтропия начинает увеличиваться. Это происходит только при особых обстоятельствах. Например, в квазиравновесных состояниях. Однако такая активность может привести к возникновению отрицательной температуры. Даже если энергия системы начнет увеличиваться.

Это может показаться странным, но система с отрицательной температурой может быть более горячей, чем система с положительной температурой. Так происходит потому, что распределение тепловой энергии может иметь разное направление. Обычно, в мире с положительной температурой, тепло течет из более горячего места, такого как нагретая печь, в более прохладное место, такое как комната. В системе с отрицательными температурами все будет происходить наоборот.

3 января 2013 года ученые сумели получить квантовый газ, состоящий из атомов калия, который имел отрицательную температуру. Еще ранее, в 2011 году, Вольфганг Кеттерле, Патрик Медли и их команда продемонстрировали возможность получения отрицательной абсолютной температуры в магнитной системе.

Абсолютный нуль температуры — минимально возможная температура по термодинамической температурной шкале (шкале Кельвина). Единица названа в честь английского физика Уильяма Томсона, которому было пожаловано звание лорд Кельвин Ларгский из Айршира. В свою очередь, это звание пошло от реки Кельвин (River Kelvin), протекающей через территорию университета в Глазго.

В 1954 X Генеральная конференция по мерам и весам установила термодинамическую температурную шкалу по которой 1 кельвин равен 1/273,16 термодинамической температуры тройной точки воды. Начало шкалы (0 К) совпадает с абсолютным нулём. Пересчёт в градусы Цельсия: °С = K — 273,15 (температура тройной точки воды — 0,01 °C).

При стремлении температуры системы к абсолютному нулю к нулю стремятся и ее энтропия, теплоемкость, коэффициент теплового расширения, прекращается хаотическое движение частиц, составляющих систему. Одним словом вещество становится супервеществом с сверхпроводимостью и сверхтекучестью.

Абсолютный нуль температуры на практике недостижим, а получение температур, предельно приближающихся к нему, представляет сложную экспериментальную проблему, но уже получены температуры, лишь на миллионные доли градуса отстоящие от абсолютного нуля.

Ученые получили температуру ниже абсолютного нуля. Фото: cybersecurity.ru

Ученым удалось охладить вещество ниже температуры, которая до сих пор считалась абсолютным минимумом.
Абсолютный ноль по шкале Кельвина или минус 273,15 градусов по Цельсию считается самой низкой из возможных температур, так как при ней даже самый легкий элемент – водород – полностью теряет свою подвижность, то есть, замерзает, пишет cybersecurity.ru.
Для генерации отрицательных температур ученые создали систему, в которой атомы имели жесткий предел того, какой энергией они могут обладать. Для этого физики взяли 100 000 атомов и охладили их до температуры в одну миллиардную градуса Кельвина. Атомы были охлаждены в вакуумной камере, изолированной от внешней среды. Для точного контроля атомов исследователи применяли сеть лазерных лучей и магнитных полей.
По словам ученых, температура вещества в конечном итоге зависит от того, сколько потенциальной энергии есть у атома и сколько энергии образуется от взаимодействия между атомами. Кроме того, температура также тесно связана с давлением – чем горячее объект, тем больше он расширяется и наоборот. Чтобы убедиться в том, что газ может иметь температуру ниже абсолютного нуля, нужно было создать такие условия, в которых сами атомы не имели бы существенной энергии, а от отталкивания атомов образовывалось бы больше энергии, чем от их притяжения.
Нечто подобное получилось воссоздать на наномасштабе. Симон Браун из Мюнхенского университета говорит, что в будущем на практике такие знания могут привести к созданию сверхэффективных тепловых двигателей. Работа таких двигателей опирается на преобразование тепловой энергии в механическую. Теоретически, с отрицательными температурами такие двигатели могли бы иметь КПД выше 100%, хотя с точки зрения логики это кажется невозможным.

Реклама

Подпишись на наш telegram

Только самое важное и интересное

Подписаться

Реклама

История

Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества — теплорода, чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково — градусами.

Из того, что температура — это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах — градусах.

Шкала Кельвина

В термодинамике используется шкала Кельвина, в которой температура отсчитывается от абсолютного нуля (состояние, соответствующее минимальной теоретически возможной внутренней энергии тела), а один кельвин равен 1/273.16 расстояния от абсолютного нуля до тройной точки воды (состояния, при котором лёд, вода и водяной пар находятся в равновесии). Для пересчета кельвинов в энергетические единицы служит постоянная Больцмана. Используются также производные единицы: килокельвин, мегакельвин, милликельвин и т.д.

Шкала Цельсия

В быту используется шкала Цельсия, в которой за 0 принимают точку замерзания воды, а за 100° точку кипения воды при атмосферном давлении. Поскольку температура замерзания и кипения воды недостаточно хорошо определена, в настоящее время шкалу Цельсия определяют через шкалу Кельвина: градус Цельсия равен кельвину, абсолютный ноль принимается за −273,15 °C. Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия — особая точка для метеорологии, поскольку замерзание атмосферной воды существенно всё меняет.

Шкала Фаренгейта

В Англии и, в особенности, в США используется шкала Фаренгейта. В этой шкале на 100 градусов раздёлен интервал от температуры самой холодной зимы в городе, где жил Фаренгейт, до температуры человеческого тела. Ноль градусов Цельсия — это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F — 32), то есть изменение температуры на 1 °F соответствует изменению на 5/9 °С. Предложена Г. Фаренгейтом в 1724.

Шкала Реомюра

Предложенна в 1730 году Р. А. Реомюром, который описал изобретённый им спиртовой термометр.

Единица — градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками — температурой таяния льда (0 °R) и кипения воды (80 °R)

1 °R = 1,25 °C.

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Сравнение температурных шкал

Описание

Кельвин Цельсий

Фаренгейт

Ньютон Реомюр

Абсолютный ноль

0

−273.15

−459.67

−90.14

−218.52

Температура таяния смеси Фаренгейта (соли и льда в равных количествах)

255.37

−17.78

0

−5.87

−14.22

Температура замерзания воды (нормальные условия)

273.15

0

32

0

0

Средняя температура человеческого тела¹

310.0

36.8

98.2

12.21

29.6

Температура кипения воды (нормальные условия)

373.15

100

212

33

80

Температура поверхности Солнца

5800

5526

9980

1823

4421

¹ Нормальная температура человеческого тела — 36.6 °C ±0.7 °C, или 98.2 °F ±1.3 °F. Приводимое обычно значение 98.6 °F — это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 °C. Поскольку это значение не входит в диапазон нормальной температуры по современным представлениям, можно говорить, что оно содержит избыточную (неверную) точность. Некоторые значения в этой таблице были округлены.

Сопоставление шкал Фаренгейта и Цельсия

(oF — шкала Фаренгейта, oC — шкала Цельсия)

Для перевода градусов цельсия в кельвины необходимо пользоваться формулой T=t+T0 где T- температура в кельвинах, t- температура в градусах цельсия, T0=273.15 кельвина. По размеру градус Цельсия равен Кельвину.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *