Какой вакуум в космосе?

Многие люди заблуждаются по поводу того, что происходит в космосе. Справедливости ради, весьма не многие из нас были в космосе (мягко говоря), а космос для многих из нас сложился с девятью планетами в Солнечной системе и волосами Сандры Буллок («Гравитация»), которые не развеваются в условиях невесомости. Найдется хотя бы один вопрос о космосе, на который любой человек ответит неверно. Давайте разберем десять распространенных мифов о космосе.

Люди взрываются

Возможно, один из самых старых и распространенных мифов о космосе звучит так: в безвоздушном пространстве космоса любой человек взорвется без специального скафандра. Логика в том, что поскольку там нет никакого давления, мы бы раздулись и лопнули, как воздушный шарик, который надули слишком сильно. Возможно, вас удивит, но люди куда более прочные, чем воздушные шарики. Мы не лопаемся, когда нам делают укол, не лопнем и в космосе — наши тела не по зубам вакууму. Раздуемся немного, это факт. Но наши кости, кожа и другие органы достаточно устойчивы, чтобы пережить это, если кто-то не будет активно их разрывать. На самом деле, некоторые люди уже переживали условия чрезвычайно низкого давления, работая в ходе космических миссий. В 1966 году один человек тестировал скафандр и внезапно подвергся декомпрессии на 36 500 метров. Он потерял сознание, но не взорвался. Даже выжил и полностью восстановился.

Люди замерзают

Это заблуждение часто используется в фильмах. Кто из вас не видел, как кто-то оказывается за бортом космического корабля без костюма? Он быстро замерзает, и если его не вернуть обратно, превращается в сосульку и уплывает прочь. В реальности происходит прямо противоположное. Вы не замерзнете, если попадете в космос, вы, наоборот, перегреетесь. Вода над источником тепла будет нагреваться, подниматься, остывать и опять по новой. Но в космосе нет ничего, что могло бы принять тепло воды, а значит остывание до температуры замерзания невозможно. Ваше тело будет работать, производя тепло. Правда, к тому времени, когда вам станет нестерпимо жарко, вы уже будете мертвы.

Кровь кипит

Этот миф не имеет ничего общего с тем, что ваше тело перегреется, если вы окажетесь в безвоздушном пространстве. Вместо этого он напрямую связан с тем, что любая жидкость имеет прямую связь с давлением окружающей среды. Чем выше давление, тем выше точка кипения, и наоборот. Потому что жидкости легче перейти в форму газа. Люди с логикой могут догадаться, что в космосе, где нет давления вообще, жидкость будет кипеть, а кровь — тоже жидкость. Линия Армстронга проходит там, где атмосферное давление настолько низкое, что жидкость будет кипеть при комнатной температуре. Проблема в том, что если жидкость будет кипеть в космосе, кровь — нет. Кипеть будут другие жидкости вроде слюны во рту. Тот человек, которого декомпрессировало на 36 500 метрах, говорил, что слюна «сварила» его язык. Кипение такое будет больше похоже на высушивание феном. Однако кровь, в отличие от слюны, находится в закрытой системе, и ваши вены будут удерживать ее под давлением в жидком состоянии. Даже если вы будете в полном вакууме, тот факт, что кровь замкнута в системе, означает, что она не превратится в газ и не улетучится восвояси.

Солнце

Солнце — это то, с чего начинается изучение космоса. Это большой огненный шар, вокруг которого обращаются все планеты, который находится достаточно далеко, но греет нас и при этом не сжигает. Учитывая то, что мы не могли бы существовать без солнечного света и тепла, можно считать удивительным большое заблуждение о Солнце: что оно горит. Если вы когда-нибудь обжигали себя пламенем, поздравляем, на вас попало больше огня, чем могло дать вам Солнце. В реальности Солнце — это большой шар газа, который испускает свет и тепловую энергию в процессе ядерного синтеза, когда два атома водорода образуют атом гелия. Солнце дает свет и тепло, но обычного огня не дает вообще. Это просто большой и теплый свет.

Черные дыры — это воронки

Есть еще одно распространенное заблуждение, которое можно списать на изображение черных дыр в кино и мультфильмах. Разумеется, черные дыры «невидимы» по своей сути, но для аудитории вроде нас с вами их рисуют похожими на зловещие водовороты судьбы. Их изображают двухмерными воронками с выходом только на одной стороне. В реальности черная дыра — это сфера. У нее нет одной стороны, которая засосет вас, скорее она похожа на планету с гигантской гравитацией. Если вы подойдете к ней слишком близко с любой стороны, вот тогда вас поглотит.

Повторный вход в атмосферу

Все мы видели, как космические корабли совершают повторный вход в атмосферу Земли (так называемый re-entering). Это серьезное испытание для судна; как правило, его поверхность сильно разогревается. Многие из нас думают, что это из-за трения между кораблем и атмосферой, и в этом объяснении есть смысл: как бы корабль был окружен ничем, и вдруг начинает тереться об атмосферу с гигантской скоростью. Разумеется, все будет раскаляться. Что ж, правда в том, что трению отводится менее процента тепла во время повторного входа. Основная причина нагрева — компрессия, или сжатие. Когда корабль несется обратно к Земле, воздух, через который он проходит, сжимается и окружает корабль. Это называется головной ударной волной. Воздух, который сталкивается с головой корабля, толкает его. Скорость происходящего приводит к тому, что воздух нагревается, не имея времени на декомпрессию или охлаждение. Хотя часть тепла абсорбируется тепловым щитом, красивые картинки повторного входа в атмосферу создает именно воздух вокруг аппарата.

Хвосты комет

Представьте на секунду комету. Скорее всего, вы представите кусок льда, несущийся сквозь космическое пространство с хвостом из света или огня позади. Возможно, для вас будет сюрпризом, что направление хвоста кометы не имеет ничего общего с направлением, в котором движется комета. Дело в том, что хвост кометы не является результатом трения или разрушения тела. Солнечный ветер нагревает комету и приводит к таянию льда, поэтому частицы льда и песка летят в противоположном ветру направлении. Поэтому хвост кометы не обязательно будет тянуться за ней шлейфом, однако всегда будет направлен в сторону от солнца.

Меркурий

После понижения Плутона по службе, Меркурий стал самой маленькой планетой. Также это ближайшая к Солнцу планета, поэтому вполне естественно было бы предположить, что это самая горячая планета нашей системы. Короче, Меркурий — чертовски холодная планета. Во-первых, в самой горячей точке Меркурия температура составляет 427 градусов по Цельсию. Даже если бы на всей планете сохранялась такая температура, все равно Меркурий был бы холоднее Венеры (460 градусов). Причина того, что Венера, которая почти на 50 миллионов километров дальше от Солнца, чем Меркурий, теплее, кроется в атмосфере из углекислого газа. Меркурий похвастать не может ничем.

Другая причина связана с его орбитой и вращением. Полный оборот вокруг Солнца Меркурий совершает за 88 земных дней, а полный оборот вокруг своей оси — на 58 земных дней. Ночь на планете длится 58 дней, что дает достаточно времени, чтобы температура упала до -173 градусов по Цельсию.

Зонды

Все знают, что марсоход «Кьюриосити» в данный момент занимается важной исследовательской работой на Марсе. Но люди забыли о многих других зондах, которые мы рассылали на протяжении многих лет. Марсоход «Оппортьюнити» приземлился на Марсе в 2003 году с целью провести миссию в течение 90 дней. Спустя 10 лет он все еще работает. Многие люди думают, что мы никогда не отправляли зонды на планеты кроме Марса. Да, мы отправили множество спутников на орбиту, но посадить что-то на другую планету? Между 1970 и 1984 годами СССР успешно посадил восемь зондов на поверхности Венеры. Правда, все они сгорели, благодаря недружелюбной атмосфере планеты. Самый стойкий венероход прожил около двух часов, гораздо дольше, чем ожидалось.

Если мы отправимся чуть дальше в космос, мы достигнем Юпитера. Для роверов Юпитер — это еще более сложная цель, чем Марс или Венера, поскольку состоит почти целиком из газа, на котором ездить нельзя. Но это не остановило ученых и они отправили туда зонд. В 1989 году космический аппарат «Галилео» отправился изучать Юпитер и его спутники, чем и прозанимался следующие 14 лет. Он также сбросил зонд на Юпитер, а тот отправил информацию о составе планеты. Хотя на пути к Юпитеру находится и другой корабль, та, самая первая информация, имеет неоценимое значение, поскольку на тот момент зонд «Галилео» был единственным зондом, погрузившимся в атмосферу Юпитера.

Состояние невесомости

Этот миф кажется настолько очевидным, что многие люди никак не хотят переубеждать себя. Спутники, космические аппараты, астронавты и другое не испытывают невесомости. Настоящая невесомость, или микрогравитация, не существует и никто ее не испытывал никогда. Большинство людей находятся под впечатлением: как же так, астронавты и корабли плавают, поскольку находятся далеко от Земли и не испытывают действие ее гравитационного притяжения. На самом деле именно гравитация позволяет им плавать. Во время облета Земли или любого другого небесного тела, обладающего значительной гравитацией, объект падает. Но поскольку Земля постоянно движется, эти объекты не врезаются в нее.

Гравитация Земли пытается затащить корабль на свою поверхность, но движение продолжается, поэтому объект продолжает падать. Это вечное падение и приводит к иллюзии невесомости. Астронавты внутри корабля тоже падают, но кажется, будто они плавают. Такое же состояние можно испытать в падающем лифте или самолете. И вы можете испытать 23 секунды невесомости в самолете, свободно падающем на высоте 9000 метров.

Вакуум (от лат. vacuum — пустота)

В классической физике критерием существования в каком-либо объеме вакуума принимается следующее условие: длина свободного пробега молекулы, т.е. без столкновений с другими молекулами, должна быть больше, чем линейные размеры рассматриваемого объема. Однако понятие вакуум имеет три значения — различных для техники, космических исследований и физики.

В технике вакуумом называется состояние газа при его давлении ниже стандартного атмосферного давления, равного 101 325 Паскалей. Приняты следующие степени — градации технического вакуума:

Степень (градация) вакуума

Диапазон давлений

(Паскали)

Диапазон высот над поверхностью Земли с таким же диапазоном давлений (км)

Низкая

Выше 100

Ниже 50

Средняя

от 100 до 0,1

От 50 до 85

Высокая

от 0,1 до 1*10-5

От 85 до 250

Сверхвысокая

Менее 1*10-5

Выше 250

На высоте 50 тысяч километров над поверхностью Земли давление составляет около 1*10 -19 паскалей, т.е. концентрация молекул равна примерно четырем штукам в 1 см3. Такая концентрация уже близка к состоянию космического вакуума. В околоземном межпланетном пространстве концентрация атомов порядка нескольких штук в 1 см3. В основном они являются компонентами солнечного ветра и поэтому ионизированы. В межзвездном пространстве, вне газовых облаков, концентрация атомов раз в десять меньше. Внутри газовых облаков она примерно такая же, как в межпланетном пространстве. Таким образом, да еще с учетом существования космической пыли, космический вакуум — это отнюдь не пустота.

Физическим вакуумом называется пространство, в котором отсутствуют частицы вещества и установилось низшее энергетическое состояние, когда среднее число квантов физических полей (см. Поле физическое) равно нулю. Однако в вакууме экспериментально обнаружены рождающиеся и тут же исчезающие виртуальные элементарные частицы, влияющие на протекающие физические процессы. Например, реально зарегистрирована поляризация электромагнитного излучения на этих частицах.

Понятие вакуума и единицы измерения

Термин «вакуум», как физическое явление — среда, в которой давление газа ниже атмосферного давления.

Количественной характеристикой вакуума служит абсолютное давление. Основной единицей измерения давления в Международной системе (СИ) служит Паскаль (1 Па = 1Н/м2). Однако, на практике встречаются и другие единицы измерения, такие как миллибары (1 мбар = 100Па) и Торры или миллиметры ртутного столба (1 мм.рт.ст. = 133,322 Па). Данные единицы не относятся к СИ, но допускаются для измерения кровяного давления.

Уровни вакуума

В зависимости от того, на сколько давление ниже атмосферного (101325 Па), могут наблюдаться различные явления, вследствие чего могут использоваться различные средства для получения и измерения такого давления. В наше время выделяют несколько уровней вакуума, каждый из которых имеет свое обозначение в соответствии с интервалами давления ниже атмосферного:

Данные уровни вакуума в зависимости от области применения разделяют на три производственные группы.

— Низкий вакуум: в основном используется там где требуется откачка большого количества воздуха. Для получения низкого вакуума используют электромеханические насосы лопастного типа, центробежного, насосы с боковым каналом, генераторы потока и т.д.

Низкий вакуум применяется, например, на фабриках шелкотрафаретной печати.

— Промышленный вакуум: термин «промышленный вакуум” соотвествует уровню вакуума от -20 до -99 кПа. Данный диапазон используется в большинстве применений. Индустриальный вакуум получают с помощью ротационных, жидкостно-кольцевых,поршневых насосов и лопастных вакуумных генераторов по принципу Вентури. Область применения промышленного вакуума включает в себя захват присосками, термоформование, вакуумный зажим, вакуумная упаковка и др.

— Технический вакуум: соответствует уровню вакуума от -99 кПа. Такой уровень вакуума получают при помощи двухуровневых ротационных насосов, эксцентриковых роторных насосов, вакуумных насосов Рутса, турбомолекулярных насосов, диффузионных насосов, криогенных насосов и т.д

Такой уровень вакуума используется в основном при лиофилизации, металлизации и термообработке. В науке технический вакуум используется в качестве симуляции космического пространства.

Наивысшее значение вакуума на земле значительно меньше значения абсолютного вакуума, которое остается чисто теоретическим значением. Фактически, даже в космосе, несмотря на отсутствие атмосферы, имеется небольшое количество атомов.

Основным толчком к развитию вакуумных технологий послужили исследования в промышленной области. В настоящий момент существует большое количество применений в различных секторах. Вакуум используется в электролучевых трубках, лампах накаливания, ускорителях частиц, в металлургии, пищевой и аэрокосмической индустрии, в установках для контроля ядерного синтеза, в микроэлектронике, в стекольной и керамической промышленности, в науке, в промышленной роботехнике, в системах захвата с помощью вакуумных присосок и т.д.

Многие из нас не понимают природу вакуума и до сих пор считают, что вакуум – это просто ничто, пустота, пространство, лишенное материи и молекул. Вакуум как Пустота, такое понятие существовало еще в средние века и вызывало большой интерес среди ученых того времени.

В Средние века католическая церковь запрещала все исследования, связанные с пустотой, так как провозглашала это понятие священным. В 1211 году Уставом Парижского Собора заниматься «пустотой” было разрешено только теологам. Натурфилософы не имели такого права. Одним из главных постулатов теологии был: «Природа боится Пустоты”.

В 1640 году итальянский ученый Галилео Галилей, занятый в то время проектированием и строительством колодцев во Флоренции, определил «Силу боязни Пустоты” и показал, что она составляет 10 метров водяного столба или 1 кг на см2. Кто бы мог подумать, что на данном принципе будет построена аэрация водоемов и выбор насос компрессоров для пруда.

В 1643 году Эвангиелисто Торичелли, ученик Галилея, измерил эту силу, используя стеклянную трубку, запаянную с одного конца, и показал, что эта сила уравновешивается столбом ртути высотой 760 мм. Пустое пространство под поверхностью ртути было названо «Торригеллева пустота”, так как считали его абсолютно пустым. Сейчас мы знаем, что это пространство заполнено парами ртути с давлением около 1,2х10-3 мм. рт.ст (или 1,6х10-1 Па). Позже единица давления в 1 мм.рт.ст была названа тором в честь Торичелли. Большинство средств измерений вакуума, вакуумных датчиков, их диапазоны измерений указывается в торах. Более подробно с единицами измерения вакуума можно ознакомиться в технической статье по вакуумным датчикам.

В 1648 году Блез Паскаль открыл, что «Сила боязни Пустоты” была ничем иным, как атмосферным давлением. Сначала он повторил опыты Торичелли с трубкой и ртутью. Затем он попросил своего свояка Флорена Перье повторить этот эксперимент сначала у подножья горы Пюи де Дом, а затем на вершине. Эксперимент был проведен в присутствии горожан города Клермона 16 сентября 1648 года и показал разницу уровней столба ртути 82,5 мм для высоты 1,5 км. Паскаль был первым, кто доказал, что атмосферные газы создают давление. В честь этого открытия современная единица давления названа Паскалем (1 Па = 0,0076 тор). Вся вакуумная техника, характеристики вакуумных насосов, а точнее значение уровня вакуума указывается по системе измерений СИ в Паскалях.

В 1650 году Отто фон Герике, мэр города Магдебурга, сконструировавший первый воздушный насос с водяным уплотнением, осуществил свои знаменитые эксперименты с «Магдебургскими полушариями”.

В 1825 году Жан Батист Дюма, французский химик получил низкое давление путем конденсации паров воды в закрытом объеме. В 1835 году Роберт Бунзен, немецкий химик, получил вакуум с использованием струи жидкости, но все эти изобретения не использовались на практике, так как в них не было технической потребности.

Далее выяснилось, что полной пустоты в природе не существует. Ее нет даже там, где совершенно отсутствует какое бы то ни было вещество. В XVIII столетии Фарадей утверждал, что материя присутствует везде, и нет промежуточного пространства, не занятого ею.

В 1887 году русские ученые Столетов и Герц открыли явление фотоэлектронной эмиссии. Эти выдающиеся технические открытия заложили техническую и экономическую основу для бурного развития вакуумных технологий в мире.

В 1874 году шотландец Мак Леод изобрел компрессионный манометр, а итальянец Пирани – манометр сопротивления, позволяющие измерять давления в низком и среднем вакууме.

В 1884 году итальянский инженер Малиньяни впервые использовал сорбент (фосфор) для улучшения вакуума в электрической лампе. Зарождение идеи создания адсорбционных и геттерных вакуумных насосов.

В 1904 году француз Дюар впервые использовал активированный уголь, охлажденный жидким азотом для сорбции (откачки) газов. Всем известные сосуды Дюара для хранения жидкого азота.

В 1906 году немецкий инженер Геде изобрел вращательный ртутный, а затем вращательный масляный насосы. Пять лет позже он изобрел молекулярный вращательный насос. Потом появились современные турбомолекулярные насосы.

В период с 1914 по 1916 гг. парортутный диффузионный насос был практически одновременно изобретен в трех странах, разделенных границами Первой Мировой войны: в России – профессор Боровиком, в Германии – Геде, во Франции – Ленгмюром.

В 1916 году американский ученый Бакли изобрел ионизационный манометр. В 1928 году Берч изобрел паромасляный диффузионный насос, в котором ртуть была заменена маслом.

Фундаментальные основы вакуумной техники были созданы в начале ХХ века теоретическими работами Дешмана (Америка), Ленгмюра (Франция), Кэмпбелла (Англия), Кнудсена (Голландия), а также русскими учеными – академиком Иоффе и профессором Богуславским.

В настоящее время без вакуума не обходится ни одна сфера науки и промышленности. Испытания в вакууме, термовакуумные испытания, исследования физики вакуума, возникновения вселенной. Более подробно области применения вакуума описаны в статье, применение вакуума в науке и промышленности.

Вернемся к описанию вакуума, пространства и времени. Абсолютно любая область космического пространства всегда заполнена если не веществом, то какими-либо другими видами материи, будто магнитными полями, влиянием гравитации, излучениями и другими полями. Большая часть космоса состоит из темной материи и энергии, 96% космоса и только 4 % скопления газа и звезды. Состав и природа темной материи на настоящий момент не известны.

Подумайте только, вообразите себе на минуту, что нам каким-то образом удалось совершенно опустошить некоторую область пространства, откачать воздух и удалить из вакуумного объема вакуумной камеры все частицы, излучения и поля. Так вот даже в этом случае все равно осталось бы «Нечто». Определенный запас энергии, который у ва­куума нельзя отобрать никакими способами. Что говорить о существовании неизведанной темной материи. Но человечество любопытно в своих стремлениях, и кто знает, какие ждут нас открытия в будущем.

Обнаружились неожиданные и интересные факты. Оказалось, что вакуум способен рождать элементарные частицы, порождать вещество. Мало того, с самим вакуумом могут происходить различные физические превращения, он способен взаимодействовать с чем-то и даже сам с собой.

Помню, учась в институте на первом курсе кафедры, нам преподавали основы вакуумной техники, отец меня спросил, решив поймать на вопросе: скажи мне, а существует Эхо в вакууме? Я задумался, в лесу распространение звука есть, мы слышим его в виде Эхо, а что происходит в вакууме? Я честно признаюсь, я колебался с ответом и не мог ответить на вопрос, но посетили мысли о том, как может звук распространяться в вакууме, ведь нет ничего, от чего он может отражаться.

Вакуум взаимодействует с вакуумом? Значит ли это, что рушится один из самых основных законов природы, закон сохранения материи? Меня часто посещают мысли, вакуум как нечто материальное, особая форма существовании материи, а некоторые ученые предлагают считать ВАКУУМ особым состоянием вещества. Тут больше философский интерес, ведь вакуум представляет собою нечто более универсальное и всеобъемлющее, чем любая другая известная нам форма существования материи. Может быть, вакуум и есть та «протосреда», из которой могут образовываться все другие виды вещества и материи.

В частности, советский ученый высказал интересные гипотезы о том, что вакуум представляет собой не что иное, как бесконечно большой запас энергии одного знака, компенсированный энергией другого знака. Таким образом, вакуум — это как бы совокуп­ность, своеобразное единство противоположностей. Когда же из вакуума образуются другие формы материи, которые и составляют то, что мы называем Вселенной, эти противоположности разделяются. Не исключена возможность, что с подобной точки зрения удастся объяснить такие явления, как образование космических лучей высоких энергий, вспышки сверхзвезд, образование радиогалактик, а также начало расширения галактик.

О том, что ВАКУУМ — НЕ ПУСТОТА, а сложная физическая система, лучше всего свидетельствует открытие одного из самых поразительных явлений — так называемой «поляризации вакуума», к которому пришла квантовая электродинамика.

Квантовая электродинамика, или квантовая теория электромагнитного поля, — один из сравнительно молодых и наиболее сложных разделов современной физики. Она занимается изучением всевозможных взаимодейст­вий фотонов электромагнитного поля с заряженными частицами. Вакуум оказался еще значительно сложнее, чем мы это себе представляли. Но тем интереснее узнавать о нем больше и познавать его.

В вакууме, который рассматривается как особое состояние материи, скрыты не только электроны и позитроны, но и пары «протон—антипротон». Такие пары, если к ним подвести энергию в форме, например, фотонов, становятся реальными: их можно зарегистрировать.

Если в вакууме покоится заряженная частица — протон, то согласно законам квантовой механики вокруг него будут непрерывно рождаться и уничтожаться электроны и позитроны. Создается своеобразная «плазма» наподобие той, которая возникает в газовом разряде. Поэтому вблизи протона вакуум приобретает суммарный отрицательный заряд, а на большом расстоянии от него — суммарный положительный. В результате заряд протона несколько уменьшается — «экранируется». Это и есть поляризация.

Следовательно, частица, оказавшаяся в вакууме, расталкивает вокруг себя заряды, расталкивает «плазму». Именно это обстоятельство и дает возможность наблю­дать эффект, о котором идет речь.

Хотя возникающие в «плазме» заряженные частицы «живут» лишь десять в минус двадцать первой степени секунды и наблюдать их нельзя, свойства электронного поля вблизи протона, как уже говорилось, изменяются. Это явление можно наблюдать экспериментально. Однако расчет величины подобного эффекта долгое время наталкивался па непреодолимые трудности. Соответствующие эксперименты были проведены учёными на ускорителях, получив непосредственное опытное подтверждение природы вакуума.

Мне хочется верить в предположение ряда ученых, что в будущем на смену современной физической картине мира, которая базируется на взаимодействие различных полей электромагнитных, гравитационных и других — придет вакуумная картина. Такая картина должна исходить из того, что основой всего во Вселенной является вакуум, а все существующее, по меткому выражению одного известного ученого, не более как «легкая рябь» на его поверхности. Обычное вещество может оказаться в определенном смысле конечным, а суть всех вещей заключаться именно в вакууме.

Еще с появлением теории относительности была обнаружена тесная связь между свойствами материи и свойствами пространства и времени. При этом до сих пор мы исходили из предположения, что определяющую роль играют свойства материи вещества, частицы, полей, а свойства пространства и времени являются вторичными, производными. Однако в принципе не исключена возможность, что в действительности все обстоит наоборот: свойства материи представляют собой не что иное, как проявление определенных геометрических свойств, так сказать, пространственно-вре­менного «каркаса».

Согласно современным физическим воззрениям, реальное пространство Вселенной, в котором мы живем, является «трехмерным» и «односвязным». Первое из этих свойств означает, что в нашем пространстве через одну точку можно провести только три взаимно перпендикулярные прямые линии. Правда, согласно теории относительности Альберта Эйнштейна в природе существует и еще одно, четвертое измерение: Время. Но это четырехмерное «пространство-время» теории относительности фактически является лишь математическим приемом, позволяющим в удобной форме описывать различные физические процессы. Поэтому говорить о том, что мы с точки зрения теории относительности живем в четырехмерном мире, можно лишь в том смысле, что все происходящие в природе события совершаются не только в пространстве, но и во времени.

Есть и зоны, где происходят явления, которые вообще трудно даже себе представить: здесь временная координата меняется ролями с одной из пространственных, время как бы превращается в расстояние, а расстояние — Время.

Разумеется, в любом случае высшим и окончательным судьей истинны или ложности любой теории остается эксперимент. Но, тем не менее, физический анализ способен оказывать весьма существенную помощь при оценке тех или иных ситуаций, складывающихся в процессе изучения природы вакуума и выборе наиболее эффективных путей дальнейшего исследования.

Компания ВАКТАЙМ занимается поставкой специализированных исследовательских комплексов, разработкой научного и инновационного вакуумного оборудования, проектированием сложных вакуумных систем, монтажом вакуумных систем откачки, систем имитации условий космического пространства. Таких как имитация космоса, холодного космического пространства, где температуры могут достигать температур жидкого азота, имитация вакуума и теплового излучения земли, излучения солнца, испытаний объектов в вакууме.

Технические специалисты компании ВАКТАЙМ окажут поддержку и консультацию в вопросах подбора вакуумного оборудования для проведения Ваших исследований, предложат различные варианты компоновок вакуумных систем, посоветуют аналитическое оборудование для определения остаточного состава атмосферы в вакуумной камере, спроектируют и изготовят вакуумные камеры для Ваших задач.

Компания ВАКТАЙМ поставляет и изготавливает вакуумные откачные стенды для создания сверхвысокого вакуума менее 10-11 Паскаля. Сверхвысоковакуумная камера для Ваших исследований и экспериментов в вакууме. Узнайте больше в разделе вакуумные камеры.

Компания ВАКТАЙМ поставляет средства измерения вакуума для низкого и высокого вакуума, в том числе известный вакуумметр итальянского ученого Пирани. В честь этого ученого названы самые распространённые вакуумметры мира. Более подробно вы можете ознакомиться в статье «Cредства измерения вакуума, история вакуумметры».

Какие бы перед Вами задачи в области исследования и применения вакуума не стояли, компания ВАКТАЙМ поможет Вам с решением, предложит необходимые способы реализации с помощью самого современного вакуумного оборудования. Если Вы хотите купить вакуумный насос, купить вакуумный датчик, ищите лучшее предложение по цене и технике, но не знаете цену на вакуумный насос, позвоните нашим инженерам и мы поможем подобрать оптимальный вариант для Вас.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *